Problem 5191. Let a, b, c be positive real numbers such that $a b+b c+c a=3$.
Prove that

$$
\frac{a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b}}{a^{4}+b^{4}+c^{4}} \leq 1
$$

Proposed by José Luis Díaz-Barrero, Barcelona, Spain
Solution by Ercole Suppa, Teramo, Italy
According to AM-GM and Power Mean inequalities we get

$$
\begin{gather*}
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \leq a \frac{b+c}{2}+b \frac{c+a}{2}+c \frac{a+b}{2}=a b+b c+c a \tag{1}\\
\sqrt[4]{\frac{a^{4}+b^{4}+c^{4}}{3}} \geq \sqrt{\frac{a^{2}+b^{2}+c^{2}}{3}} \Leftrightarrow a^{4}+b^{4}+c^{4} \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{3} \tag{2}
\end{gather*}
$$

By (1) and (2), using the well know inequality $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$, we obtain

$$
\begin{aligned}
\frac{a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b}}{a^{4}+b^{4}+c^{4}} & \leq \frac{a b+b c+c a}{\frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right)^{2}} \\
& \leq \frac{3(a b+b c+c a)}{(a b+b c+c a)^{2}} \\
& =\frac{3}{a b+b c+c a}=1
\end{aligned}
$$

This ends the proof. Clearly, equality occurs for $a=b=c$.

