
Problem 5191. Let a, b, c be positive real numbers such that ab+ bc+ ca = 3.
Prove that
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According to AM-GM and Power Mean inequalities we get
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By (1) and (2), using the well know inequality a2 + b2 + c2 ≥ ab + bc + ca,
we obtain
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This ends the proof. Clearly, equality occurs for a = b = c. �
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